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We study the boundedness of solutions of some second order non-autonomous delay differential equations by the Liapunov 
functional approach. We establish three new results which include sufficient conditions for the solutions of the equations 
considered to be bounded.  By this work, we improve some boundedness results in the literature, which were obtained on 
certain second order ordinary differential equations without delay, to the boundedness of the solutions of some second 
order non-autonomous delay differential equations. 
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1. Introduction and main results 
 

In applied science, second order nonlinear differential 

equations with and without delay  are used to model some 

practical problems in biology, chemistry, physics, 

mechanics, electronics, engineering, economy, control 

theory, medicine, atomic energy, information theory, etc. 

(see, for example,  the book of Ahmad and  Rama Mohana 

Rao [1] and  the reference thereof). 

In 1979, Graef [6] considered the second order 

nonlinear differential equation without delay, 
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The author established three theorems which include 

some sufficient conditions and guarantee that all solutions 

of Eq. (1) are bounded. 

In this paper, instead of Eq. (1), we consider the 

second order non-autonomous delay differential equations 

of the form 
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We write Eq. (2) in system form as  x = ,y
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where  )(  and  )( tytx  are abbreviated as  ,  and  yx  

respectively, and  we assume that ,),[:  , 0 tqa  

,00 t
 

:  , gf
 
and  4

0 ),[: , teh   

are continuous, and qa   ,
 

differentiable, ,0)( ta

0)( tq  and .0)( xg   
 
 

Our motivation comes especially from the paper of 

Graef [6]. The principal aim of this paper is to improve the 

boundedness results established in Graef [6] for Eq. (1) to 

the boundedness of solutions of nonlinear delay 

differential Eq. (2).  By defining three new Liapunov 

functionals, we prove the results established here and also 

follow a similar way as indicated in [6] for verifying our 

main results.  

It should be noted that prototypes for studying Eq. (1) 

and Eq. (2) are the well known autonomous equations of 

van der Pol  and Liénard (see Reissig et al. [13], Graef [5]) 

and the non-autonomous Emden-Fowler equation (see 

Coffman and Wong [4], Mustafa and  Tunç [12] and the 

references thereof). For a survey of some results of this 

type and the others, in particular,  we refer the reader to 

the papers of Baker [2], Burton and Grimmer [3], Graef 

and Spikes [7, 8, 9], Jin [10],  Kroopnick [11], Saker [14], 

Sun [15],  Tunç [16-24],   Tunç and Sevli [25],  C. Tunç 

and E. Tunç [26] and the references contained therein. 

The results presented here differ in some respects 

from those usually found in the literature. Namely, to the 

best of our knowledge, there is no published paper in 

recent literature on the boundedness of solutions of the 

second order non-autonomous delay differential equations 

of the form (2), when ,1)( ta   1)( tq  and 

.1)( xg
 
This is to say that we did not find any work 
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on the boundedness of solutions in the literature, which 

based on the results of Graef [6].  In addition, we allow for 

large negative damping and do not require that forcing 

term ))(,),(,,( rtyyrtxxte   be small. 

Let }0 ),({max)( tqtq 
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Our first result is the following theorem. 

Theorem 1. If in addition to conditions (4)-(10), we have 
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then all solutions   of Eq. (2) defined by the initial function  
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 Define the Liapunov functional ),,,( tt yxtVV 
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is a positive constant to be determined later. 

Let ))(),((),( tytxyx   be a solution of (3). 

Differentiating the Liapunov functional ),,( tt yxtV  

along this solution, we get 
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In the light of the assumptions of ,)(0  xf  

)(1 taa   and the inequality ,2 22 vuuv   it 

follows    
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By using the assumptions of the theorem and the 

foregoing inequality, we obtain 
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Applying the Gronwall-Reid-Bellman inequality, (see 

Ahmad and Rama Mohana Rao [1]),  and observing  
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obtain  that  ),,( tt yxtV  is bounded. Further, since 

,)( 2ata   we have that  ))(( txF  is bounded from 

which we have that )(tx  is bounded for all .00  tt  

This completes the proof of Theorem 1. 

 

Our second result is the following theorem. 

Theorem 2. Suppose conditions (5)-(8) and (10) hold, 

there is a continuous function ),[: 0tr  and a 

constant 0d
 
such that 

 

,0)(1  xgc  

,
)(

)()(
))(,),(,,(

tr

ygtq
yrtyyrtxxte

d
  

,
)(

)(

0




 


t

ds
sr

sr

 

,
)(

1

0





t

d
ds

sr
      

)(

)(
)(

tq

tr
tH 

  
is bounded,

 
and  

.
)(

)(

0




 


t

ds
sH

sH

 

If  

 

 

x

dssf
0

)(  as ,x  

then all solutions of  Eq. (2) defined by the initial function  

)()( ttx  , )()( ttx    

are bounded      for all ,0tt     where 

), ],,([ 00

1  trtC   provided  .
2221

11





arqc

ar
r   

Proof.  Again we have    

x

Kdssf
0

)(    for some 

.0K   Define the Liapunov functional  

 

),,(1 tt yxtV =

 

yx

ds
sg

s

tr
Kdssf

tHta
00

)()(

1
))((

)()(

1

,)( 

0

2

2  
 


r

t

st

dsdy   

where  2

 

is a positive constant to be determined later. 

Let ))(),((),( tytxyx   be a solution of (3).  

Differentiating the Liapunov functional ),,(1 tt yxtV  

along this solution, we get 
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Using the estimate  
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Finally, as in the proof of Theorem 1, it follows that )(tx
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If we consider the special case of Eq. (2) with ,1)( xg  

namely, we take into consideration the second order non-

autonomous delay differential equation  

 
))(()()())(),(),(),(,())(( rtxftqtxrtxtxrtxtxthxta 

 

)).(),(),(),(,( rtxtxrtxtxte                                                 

(11) 

We write Eq. (11) in system form as   

x = ,y  

)]()())(,),(,,()([
)(

1
 xftqyrtyyrtxxthyta

ta
y 

 






t

rt

dssysxf
ta

tq
)())((

)(

)(

 

)).(,),(,,(
)(

1
rtyyrtxxte

ta


                     

(12) 

 

Our last result is given by the following theorem. 

Theorem 3. Suppose conditions (4) and (5) hold, 
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Let ))(),((),( tytxyx   be a solution of (12).  
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